Motivation

- Epidemics spread over a person-person contact network.
- Forecasting disease outbreak and finding effective intervention strategies is a difficult task.
- It is hard to obtain social contact networks using survey based methods.
- At NDSSL, we synthesize detailed social contact networks by combining data from multiple sources.
- Then conduct simulations of disease outbreaks over these networks using EpiSimdemics, a high performance computing software developed at NDSSL.
- In big cities, tourists play an important role in transmitting diseases as they often visit high traffic areas in the city and come in contact with each other and residents.
- In the present work, we extend the synthetic population for the Washington DC Metro Area to include a transient population consisting of leisure and business travelers.

The Synthetic Population

- Social contact network is constructed using people-location graph.
- If two persons are at the same location, at the same time, then there is an edge among them.
- Tourist locations serve as home locations for transients.
- A party is assumed to stay at one hotel.
- Hotel locations are identified from Dun and Bradstreet data.
- Preference is given to hotels in downtown.
- Probability of a hotel being chosen for a party is given by

\[P(i | \text{num}_{\text{employees}}(i))^3 * \text{distance}_\text{from_white_house} \]

Demographics

- Individuals
- Household structure
- Statistically identical to US Census
- Assigned home and activity location

Activities and Location

- Demographically assign activity schedule at household level.
- Assign appropriate locations by activity type, distance from home and work locations.

Social Contact Network

People Vertex:
- Age
- Gender
- Household size
- Income

Edge Labels:
- Activity type: work, school, shop
- (start time, end time)

Data Sources

- United States Census
- National Household and Travel Survey
- National Center for Educational Statistics
- Dun and Bradstreet
- Navteq Street data

The Transient Population

- Hotel locations serve as home locations for transients.
- A party is assumed to stay at one hotel.
- Hotel locations are identified from Dun and Bradstreet data.
- Preference is given to hotels in downtown.
- Probability of a hotel being chosen for a party is given by

\[P(i | \text{num}_{\text{employees}}(i))^3 * \text{distance}_\text{from_white_house} \]

Locating Tourists

- Red dots show tourist hotel locations.
- For four major tourist destinations (NASM, NMNH, NMAH, and the National Art Gallery), we do detailed sub-location modeling where people keep moving to different sub-locations (rooms) after a few minutes.

Assigning and Locating Activities

- Create activity template.
- All people in a party go to the same places. However, within a location (i.e. museum), they can move around by themselves.

Experiment Setup

- Simulate a flu-like disease for Washington DC metro area.
- Initial infections are same for all the cases.
- We run 50 simulations.
- Simulate disease for 120 days.
- Every day 20% of the transients leave DC and new transients with exact same demographics replace them.

Experiments and Conclusion

Interventions:
- Location specific (NASM, NMNH, NMAH, and the National Art Gallery).
- Closing museums
- For 5 days when current number of (resident + transient) infections are more than 50000.
- For 14 days when current number of (resident) infections are more than 50000.
- Hand Sanitizers
- 50% compliance.
- With various efficacy (i.e. 60% efficacy reduces the infectivity and the susceptibility to 60% of the original value).

Results and Conclusion

- Evaluate epidemics in terms of the number of residents infected at peak, cumulative infections, and the day of the peak.
- Transient population makes a significant difference in epidemic spread.
- Closing museums does not show statistically significant effect at reducing outbreak.
- Hand sanitizers are very effective based on the efficacy:
 - Efficacy of 60% is as effective as eliminating the effect of transients and delaying outbreak.
 - Efficacy of 40% and 20% reduces the number of infections and delays peak significantly.
- We speculate that transients have an effect on the epidemic because they are a source of susceptible people that is constantly replenished. We would like to examine this analytically using differential equation based model.
- Promoting sanitary behavior such as the use of hand sanitizers helps reducing disease spread.
- We would also like to evaluate intervention strategies more systematically to determine optimal strategies.

We thank our external collaborators and members of the Network Dynamics and Simulation Science Laboratory (NDSSL) for their suggestions and comments. This work is supported in part by DTRA CNIMS Contract HDTRA1-11-D-0016-0001, NIH MIDAS Grant 2U01GM070694-09, and NSF HSD Grant SES-0729441.